Relevant statistics for Bayesian model choice
نویسندگان
چکیده
The choice of the summary statistics in Bayesian inference and in particular in ABC algorithms is paramount to produce a valid outcome. We derive necessary and sufficient conditions on those statistics for the corresponding Bayes factor to be convergent, namely to asymptotically select the true model. Those conditions, which amount to the expectations of the summary statistics to asymptotically differ under both models, are then usable in ABC settings to determine which summary statistics are appropriate, via a standard and quick Monte Carlo validation.
منابع مشابه
Bayesian Logistic Regression Model Choice via Laplace-Metropolis Algorithm
Following a Bayesian statistical inference paradigm, we provide an alternative methodology for analyzing a multivariate logistic regression. We use a multivariate normal prior in the Bayesian analysis. We present a unique Bayes estimator associated with a prior which is admissible. The Bayes estimators of the coefficients of the model are obtained via MCMC methods. The proposed procedure...
متن کاملComparison of Estimates Using Record Statistics from Lomax Model: Bayesian and Non Bayesian Approaches
This paper address the problem of Bayesian estimation of the parameters, reliability and hazard function in the context of record statistics values from the two-parameter Lomax distribution. The ML and the Bayes estimates based on records are derived for the two unknown parameters and the survival time parameters, reliability and hazard functions. The Bayes estimates are obtained based on conju...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملBayesian paradigm for analysing count data in longitudina studies using Poisson-generalized log-gamma model
In analyzing longitudinal data with counted responses, normal distribution is usually used for distribution of the random efffects. However, in some applications random effects may not be normally distributed. Misspecification of this distribution may cause reduction of efficiency of estimators. In this paper, a generalized log-gamma distribution is used for the random effects which includes th...
متن کاملAdaptive ABC model choice and geometric summary statistics for hidden Gibbs random fields
Selecting between different dependency structures of hidden Markov random field can be very challenging, due to the intractable normalizing constant in the likelihood. We answer this question with approximate Bayesian computation (ABC) which provides a model choice method in the Bayesian paradigm. This comes after the work of Grelaud et al. (2009) who exhibited sufficient statistics on directly...
متن کامل